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SUMMARY 

A multi-vortex model of the vortex sheets shed from the sharp leading edges of slender wings is 
considered. The method, which is developed within the framework of slender-body theory, is designed 
to deal with those situations in which more than one centre of rotation is formed on the wing, for 
example on a slender wing with lengthwise camber or with a strake. Numerical results are presented, 
firstly for situations where comparison can be made with a vortex sheet model and secondly for cases, 
such as those described above, where a vortex sheet model is unable to describe the flow. Where 
comparison is available, agreement is good and in the cases where more than one vortex system is 
present interesting interactions are obtained. 

KEY W o m s  Low-aspect Ratio Wings Leading-edge Separation Vortex Shedding 

1. INTRODUCTION 

The flow past a wing of low aspect ratio, placed at incidence, separates from the highly swept 
leading edges to form free shear layers. These layers are formed from the outward flowing 
boundary layers on the upper and lower surfaces of the wing merging at the leading edges. 
The subsequent growth of the layers takes place under the influence of their own external 
velocity field in which the velocities on either side of the layer are equal in magnitude but 
different in direction. On a symmetrical wing the result of this primary separation is to form 
spiral vortex structures above each half of the wing. 

The simplest model of this type of flow was due to Brown and Michael' who, considering 
conical planforms, assumed all the vorticity to be concentrated into an isolated vortex above 
each half of the wing. The extension of this model to plane wings with curved leading edges 
has been considered by Smith.2 

The subsequent vortex sheet model of separated flow over delta wings developed by 
Smith3 has been successfully applied to several conical flow problems. This model assumes 
that the vorticity in the primary vortex shed from the leading edge is concentrated into an 
infinite spiral sheet with the outer part represented explicitly in the numerical calculation and 
with the infinite inner part of the sheet replaced by an isolated line vortex. The boundary 
conditions are that the sheet is a stream surface which can sustain no pressure difference and 
that the total force on the isolated vortex and cut joining it to the free end of the sheet is 
zero. A Kutta condition is also satisfied at the leading edge where the solution would 
otherwise be singular. 

The extension of the vortex sheet model to non-conical planforms was investigated by 
Clark4 who used it for the cases of a flat wing with curved leading edges and a delta wing 
with lengthwise camber. He found that the numerical calculation was unable to deal with the 
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flow over the cambered wing when a second vortex system of opposite sign began to be shed 
underneath the wing as the effective local incidence changed sign. He concluded that the 
method as it stood could not provide an adequate representation of the two vortex systems. 
The present investigation was undertaken with a view to developing a method capable of 
resolving this difficulty. All the above methods, together with the present one, are set within 
the framework of slender-body theory, that is that changes occurring in the streamwise 
direction are slow compared to those taking place in transverse planes; upstream influence is 
neglected. 

As has been indicated, a more adaptive method is needed to deal with those situations in 
which more than one vortex system forms on a wing due to leading-edge separation. The 
model developed here is one in which the vortex sheets are modelled by a distribution of 
inviscid line vortices, viscosity being neglected except as a cause of separation. In this 
multi-vortex model the inner part of the sheet is represented by a single isolated core vortex. 
Discrete vortices are shed sequentially at intervals along the leading edge and wrap around 
the core vortex, the subsequent positions of which, as one proceeds downstream, describe 
the roll-up of the outer part of the sheet. The Kutta condition, which requires that the 
velocity at the leading edge is finite, is satisfied exactly at all streamwise stations. 

A multi-vortex model has been applied by Sacks et a1.' to non-conical leading-edge 
separation but with the absence of any distinct representation of the central core, the 
importance of which was emphasized by Moore.6 

There is a clear analogy between non-conical calculations which march in space and time 
dependent two-dimensional flows and the method of representing vortex sheets by arrays of 
point vortices, or other forms of discretization, has been used recently to obtain numerical 
predictions of a large variety of such flows (see Reference 7 for a survey). A more recent 
application of vortex shedding is that due to Longuet-Higgins' who investigates the oscillat- 
ory flow over sand ripples. In all these flows, unlike those described in the present work, the 
Kutta condition is only satisfied exactly at the instant of introduction of each new vortex. 
Otherwise, it is only satisfied in some mean sense and, by the nature of the calculation, 
cannot be satisfied exactly. Graham,' however, in his study of the oscillatory flow around 
sharp-edged cylinders, employs a discrete vortex model as in the present work but in 
addition represents the first part of the configuration, at the separation point, by a sheet 
element. 

As the number of vortices which are fed into the spiral sheet increases, the turns of the 
vortex sheet near the core become closer together and chaotic breakdown caused by 
unwanted vortex interactions in neighbouring turns ensues.6 Various methods of attempting 
to delay the onset of this instability have been employed. Fink and Soh," for example, 
introduce a technique which redistributes the vorticity after each integration step so that the 
vortices are equally spaced. This technique ensures that the contribution from the logarith- 
mic singularity, in calculating the induced velocity on the sheet, vanishes. However, it is 
questioned by Moore" to what extent this technique provides a solution of the equations of 
motion. Another stabilizing technique is to amalgamate sheet vortices with the core6 
whenever the angular separation of vortices, when viewed from the core, exceeds some 
pre-assigned critical value. This process places a new vortex at the centroid of the amal- 
gamating pair with circulation equal to the sum of the pairs circulation. However, this 
method of amalgamation has been shown by Portnoy'2 to introduce an additional vortex 
impulse into the flow. Longuet-Higgins8 uses a different amalgamation technique which 
conserves both momentum and total circulation. In the present calculations an amalgamation 
process is used which is smoother than that used by Moore,6 with no respacing of the 
remaining vortices employed. 
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In Sections 2 to 4 below the mathematical description of the model which we adopt is 
discussed. This includes derivation of the equations of motion, treatment of the boundary 
conditions, the method of introducing new vortices into the flow and expressions for the 
pressure and load on the wing. The solution procedure is detailed in Section 5 with the 
results presented and discussed in Section 6 ;  comparison is made with previous sheet model 
 calculation^^,^ where possible. 

2. MATHEMATICAL FORMULATION 

We consider a wing with axes O’xy’z’ centred on the wing apex, forming a right-handed 
system, so that O’x is aligned with the free stream, speed U. With reference to Figures 1 and 
2(a) local axes are introduced in the cross-flow plane, and are related to the axes through 0‘ 
by 

y = y’, z = z’+ h(x ) ,  (1) 
where h(x) is the distance of the wing centre line below O’x. The local angle of incidence a 
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Figure 1 .  Typical wing and axis system 

Z 

is 

( 0 )  ( b )  

Figure 2. The co-ordinate systems: (a) the cross-flow plane; (b) the transformed plane 
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of the wing to the free stream which is assumed to be small, is therefore given by 

a ( x )  = h'(x). (2) 

The semi-span of the wing is denoted by s(x). 
If we write the velocity potential @, with the velocity vector 

in the form 

0 = ux + 4 - Uzh'(x), (4) 

and apply the assumptions of slender-body theory,13 the disturbance potential 4 will satisfy 
the two-dimensional Laplace equation 

4 y y  + 4 2 2  = 0 (5 )  
in each cross-flow plane.4 The problem then reduces to that of calculating the two- 
dimensional velocity field in each cross-flow plane; the three-dimensional nature of the 
problem enters only through the boundary conditions. 

The boundary conditions are that the wing is a stream surface, so that 

4,=0 on z = O ,  (6)  
and that the disturbance decays at infinity to give 

c$ - Uzh'(x) (7) 
at large distances from the wing. There is a mathematically acceptable attached-flow solution 
to the problem posed above but, for a real fluid, the flow will separate at the sharp leading 
edges resulting in the shedding of vortex sheets springing from these edges. The singularity in 
the attached flow solution is therefore physically unsatisfactory and its removal by viscosity is 
mathematically modelled by a Kutta condition of finite velocity at the leading edges. 

The solution of the above is equivalent to seeking a complex analytic function W(Z), 
where Z = y +iz such that 4 = Re {W} satisfies all the boundary conditions. 

We introduce a simplification of the problem by the mapping 

z*2=z2-s2 (8) 

which transforms the Z-plane outside the slit representing the wing onto the Z*-plane 
outside a slit lying on the imaginary axis, as in Figure 2(b). Since the imaginary axis 
represents the vertical plane of symmetry of the flow, the boundary condition (6)  of zero 
velocity normal to the wing is now satisfied automatically in the Z*-plane. At infinity Z* - Z 
so a function satisfying (7) is 

W = -iaUZ* + f(Z*), (9) 

where lf(Z*)( - o(1) as lZl-+ m, and f(Z*) is chosen to satisfy conditions associated with the 
vortex sheets including the Kutta condition. 

We assume that the vortex sheets which spring from the leading edge can each be 
represented by a single line vortex, or core, which represents the concentrated inner spiral of 
the rolled-up vortex sheet, together with a number of line vortices which represent the outer 
part of the vortex sheet as in Figure 3.  The strengths of these sheet vortices are constant 
except for the last shed vortex, which is assumed to absorb all the vorticity, from the point at 
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2 

Figure 3. Typical vortex system in the cross-flow plane 

which it leaves the leading edge, which would have been shed from the leading edge into the 
vortex sheet, and also vortices undergoing amalgamation in the manner described below. 

If n vortices are present to describe the vortex sheet which is shed from each leading edge, 
in a particular cross-flow plane, the complex potential in the transformed plane which both 
satisfies the boundary conditions, and incorporates the multi-vortex sheet description, is 
given by 

where an overbar denotes the complex conjugate. 
The complex conjugate velocities in the two planes are related, using (7), by 

(11) 
Z 

(u -iw),* 9 - d W  dWdZ" d W Z  
d Z  dZ* d Z  dZ*Z" Z*' 

(0 -iwIz = - = - - =- - = 

where, in the Z-plane, u = 4y and w = & and from (10) 

To satisfy the condition of finite velocity at the leading edges, Z = fs, the Kutta condition 
requires that, from ( l l ) ,  

d W  -=0 at Z"=O. 
dZ" 

From (12) this may be written as 

The position of a line vortex of constant strength at Z = Zi, which must align itself with the 
local flow direction, is given by 

U - =  dzi  lim --. dW' 
dx Z-Z,  d Z  
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where 

(16) 
Ti W = W - - In (2 - Zi ). 

2mi 

Using (lo), (15) becomes 

The last shed vortex (subscript n) whose strength is changing must be attached to the 
leading edge by a cut to ensure that flow variables are single valued. This cut can be thought 
of as a surface which carries transverse vorticity from the leading edge into the vortex. 
Equation (lS),  which implies that the vortex is force-free, is now replaced by a condition 
which ensures that the total force on the vortex and cut is zero. The pressure jump across the 
cut gives rise to a force 

drn ipU(Z, - s) -, 
dx 

where products in the disturbance velocities have been neglected, and p is the density. The 
force on the vortex itself is given by 

The condition of zero total force on the combination of vortex and cut may then be written 
as 

d2, - dr, rn dW' 
r,-+(Z,-s)-=- lim - 

dx dx U Z - Z ,  d Z '  

The stability of a multi-vortex model of this type, that is, one in which a core is identified, 
is enhanced if vortices at the free end of the sheet are amalgamated with the core vortex 
when the sheet is assumed to be adequately described, in the sense described in Section 5. 
This amalgamation process takes the form of introducing a cut, as before, but now between 
the core vortex, subscript 1, and the last sheet vortex, subscript 2, and again satisfying a zero 
total force condition on the core vortex and cut as the vorticity is transferred. Thus 

dZ1 - - dr ,  rl dW' r'l-+(Zl-Z2)-=- lim - 
dx dx Uz--tzI d Z  ' 

This equation will then replace equation (17) with i = 1. 
We have described above a model of the vortex sheet, which forms at the leading edge of a 

slender wing, in which vorticity is created at the leading edge in the form of a succession of 
line vortices growing from it. These vortices spiral around a central vortex core, which itself 
represents the tightly wound inner vortex sheet, and are amalgamated with it when the outer 
part of the sheet is deemed to be adequately represented as measured, for example, by its 
angular extent. The novel feature of the present treatment is that the circulation of each line 
vortex varies continuously with the streamwise distance x. On the one hand this should 
provide a better approximation to the continuous development of the flow, and, on the 
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other, it should reduce the magnitude of disturbances, so that the onset of instability is 
delayed. 

3 .  VORTEX INTRODUCTION 

Equations (14), (17) and (20) are sufficient to determine Z l ;  i = 1,. . . , n, and r, as functions 
of the streamwise variable x. However, there are difficulties in starting a numerical integra- 
tion at a point where a new vortex is about to be introduced into the flow at, say, x = xo due 
to the rapid changes in the circulation of the new vortex. To overcome this, Smith14 has 
developed a solution of the equations of motion in powers of x from which initial values for 
a numerical integration at x = xo+ E ( E  > 0) may be obtained. A brief account of these 
expansions are given below, for a more detailed derivation see Peace-Reference 15. 

Without loss of generality we can assume xO = 0 and then the wing can be described as that 
portion of the plane z = 0 for which ( yI G s(x) where 

and a discontinuity in K is permitted at x = 0. Writing 

z~(x)=z~(0)+xz~(0)+o(x~); x 3 0  -) 

(v -iw)z 
U S O  

2: = sO(c + i7) 

5 = XISO 

where so = s(0), the following composite expansions are obtained from (14), (17) and (20). 
(i) K a B  

F6 
lT= (T) 2(K-B ' I2 (--)~!3 6 + (y35t/6 1 

(ii) K <  B 

5 
r =  

5A - 8C(B - K )  
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and a prime denotes differentiation with respect to x. The local flow velocity at xo from the 
third of equations (22) results in a different asymptotic behaviour depending upon whether 
the local flow direction immediately downstream of xo is outboard (B > K )  or inboard 
( B < K )  of the leading edge. Hence the first of equations (22) together with (23) or (24) 
furnish us with a starting solution for the numerical integrations of (17) and (20) during the 
shedding of each vortex; equation { 14) is satisfied throughou~. 

4. PRESSURE AND LIFT 

The local normal force coefficient on the wing, cN(x),  can be obtained by direct numerical 
integration of the pressure jump AC, across the wing, where the operator A denotes lower 
surface minus upper surface. Thus 

where C, is defined and calculated in the usual manner according to slender-body t h e ~ r y . ~  
The overall normal force coefficient is then 

(27) 
2 l  

=$ [ s(x)cN(x) dx, 

where 1 is the length of the wing and S is its area. For a conical flow, cN is constant and 

Alternatively, the overall lift can be obtained from a momentum argumentf3 so that, using 
CN = CN. 

(8) and fW, 

and, from (27), 

5 .  SOLUTION PROCEDURE 

The problem is to determine the 2n unknown vortex co-ordinates yi, zi (Zi = yi +izi); 
i 1= 1,. . . , n and the unknown vortex strength r,, which gives 2n + I unknowns in all. 
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Elimination of r, using (14) leaves 2n unknowns and in (17); i = 1, . . . , n - 1 and (20a) we 
have 2n equations or, if amalgamation is taking place and so dr,/dx is specified (see below), 
we have 2n -4  equations from (17); i = 2, . . . , n - 1 and 4 equations from (20a) and (20b) to 
give, again, a total of 2n equations. 

Hence, the problem is reduced to solving a system of coupled, first order, ordinary 
differential equations of the form 

d qi 
-=fi(x, q,, . . . , q2,,); dx i = 1,. . . , 2 n ,  

where qi stands for an unknown vortex co-ordinate, i.e. yi, zi; i = 1, . . . , n. The initial 
conditions are obtained from Section 3 and can be written as 

qi(x,+ E )  = qio; i = 1, .  . . ,2n.  ( 3 0 ~  

The initial-value problem (30) is solved by integrating stepwise in the x-direction, during 
the growth of each vortex, using a variation of a fourth order Runge-Kutta method due to 
Merson.16 The method evaluates the local truncation errors at each station using only data 
from the previous upstream solution. This enables the truncation errors to be monitored and 
kept within some prescribed tolerance by varying the size of the integration step length if 
necessary. 

The scheme which is employed starts each calculation with a single vortex representation’ 
of the vortex system over some part of the initial conical planform at the wing apex. 
Thereafter vortices are shed sequentially from the leading edge: their motion is calculated by 
the method described above, with the streamwise distance x, (the shedding length) over 
which a vortex is shed maintained at some constant value throughout the calculation. Only 
the last shed vortex, and vortices undergoing amalgamation, are changing in strength; the 
other vortices remain of constant strength. When the vortices have wrapped around the core 
to the extent that a prescribed sheet length is achieved, the one at the end of the sheet is 
amalgamated with the core vortex. This amalgamation process takes place over the same 
shedding length, xs, and the rate of transfer of vorticity is prescribed as a linear function of x 
so that, in (20b), dr,/dx = r2/xs. The values of rl and rz are updated after each integration 
step during the shedding length. 

Difficulties arise during the course of the calculation discussed above when the sign of the 
vorticity shed from the leading edge changes. The difficulty takes the form of an insistence by 
the method that it requires smaller and smaller integration steps, as I’, -+ 0, to keep the 
truncation errors within the prescribed tolerance and so makes the calculation impractically 
long. To overcome this, a variation on the above method was introduced which considers the 
flow to be attached during this ‘transition’ period; that is, I?, is set to zero and vorticity is no 
longer shed from the leading edge. The Kutta condition is therefore then only approximately 
satisfied. 

This transition period is monitored using the parameter A of the second of equations (22) 
which is small when the shed vorticity is small. If we define a small critical value of A, Amit, 
we require that vorticity shall not be shed when IAI d Aait; shedding is recommenced when 
/A1 > ALTi, and the Kutta condition is reintroduced. 

In situations when a second centre of rotation is obviously about to form, for example on 
the delta wing with lengthwise camber discussed in the next section, the vortex which 
signifies its genesis is grown for a number of normal shedding lengths, usually between 5 and 
10, to provide a substantial centre of rotation which subsequent vortices can encircle to 
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represent the sheet in this new position. This process is essentially the counterpart of the 
original single vortex representation’ which commences the solution at the wing apex. 

6.  RESULTS AND DISCUSSION 

The method described in Section 5 has been applied to a number of wings; the results of the 
calculations are given below. The first example is primarily intended as a check on the 
method from a comparison of the results obtained from the vortex-sheet model for a delta 
wing.3 A further comparison with a wing of gothic planform is made in Reference 15. The 
second example of the wing with chordwise camber continues the flow description past the 
point at which the vortex-sheet calculation4 breaks down; again a comparison can be made 
up to that point. The third and fourth examples exploit the method to describe the flow over 
other wings of interest. 

(i) Flat delta wing 

The wing chosen is defined by 
s(x) = 0*2x, x 3 0 
h ( x ) = 0 * 2 x ,  x20 

so that the leading edges are straight and the incidence is constant. Although the flat delta 
wing is conical in planform throughout, the calculation is here treated as an essentially 
non-conical one, in that the solution is computed at each streamwise station as we march 
downstream in the manner described in the preceding section. The incidence parameter3 
associated with the wing is a = tan a/K = 1.0 where K =tan y and y is the semi-apex angle. 
The vortex-sheet results3 exploit the conicality of the wing and so define a similarity solution 
such that the solution at any streamwise station is obtained from a single scaled solution. The 
total circulation, in its similarity from r/KUs, is thus constant at all cross-sections, as in the 
sheet shape when lengths are scaled with the semi-span, s. 

In order to investigate the asymptotic nature of the multi-vortex model as x - + m  the 
solution was continued downstream until the total circulation, scaled with the wing semi- 
span, remained constant. In such a calculation a constant shedding length results in an 
unreasonably large number of vortices describing the sheet, with correspondingly large 
computation times. To overcome this a conical shedding length was introduced with x, = ks 
where k can be chosen to vary the number of vortices which represent the sheet. The results 
for total circulation, for increasing vortex ‘densities’ in the sheet, are shown in Figure 4; all 

r/u. 

I 
11 vortices in full turn 

21 vortices in full turn 

Smith 

bX 
10 3 0  5 0  7 0  9 0  

Figure 4. Flat delta wing-total circulation 
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Figure 5.  Hat delta wing-vortex sheet shape 

sheets are of one full turn in extent. For the most dense case, the vortex sheet shape and 
wing pressure distribution are plotted in Figures 5 and 6. 

As can be seen, increasing the density of vortices in the sheet increases the closeness of the 
value of total circulation as calculated by the present method to that calculated by Smith.3 
The sheet shape, which is plotted when the total circulation has reached an almost constant 

o ~ ~ / s  

/' 
-0.2 

Figure 6. Hat delta wing-pressure distribution 
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value at x = 9-94, is virtually coincident with Smith’s result, with only a slight variation in the 
core position. Again it may be noted that quite good agreement is still achieved upstream of 
this position. However, the pressure distribution does show some differences. First, the 
present results show a higher suction peak than Smith’s and secondly the present results 
show a larger pressure difference near the leading edge. The first discrepancy is probably due 
to the fact that more vorticity is concentrated in the core vortex in the present results and the 
second, in a sense, is to be expected since it is generally accepted that a multi-vortex model is 
less able to accurately describe a vortex sheet close to the separation point than at other 
points of the sheet. In fact, as was mentioned earlier, some vortex models9 represent the first 
increment of the vortex sheet by an actual sheet element. The local normal force coefficient 
was calculated from both equations (26) and (29), and agreement to three significant figures 
was obtained between the two, with a value of 0.455. This may be compared with the value 
0.443 given by Smith.3 

There is, of course, a certain degree of arbitrariness in the point chosen in the shedding 
cycle at which one analyses results. To show the kind of behaviour which occurs within the 
shedding cycle, Figures 7(a) and (b) show the variation of total circulation (r /Us)  for 
separate cycles at two different positions in the above calculation for the most dense vortex 
sheet. The positions shown are (a) at the point where a complete turn of the sheet has just 

0.91 I I I I I 1X 

1.55 1.57 1.59 1.61 

( 0 )  

r/us 
- 

X S  t 

0.955 

0.95 
9.7 9.8 9.9 

( b )  

Figure 7. Variation in total circulation during shedding cycle for delta wing: (a) full turn of sheet just achieved; (b) 
total circulation reached constant value 
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been achieved (x = 1.56) and (b) at the point where the total circulation, when sampled 
solely at the end of each shedding cycle, has achieved an almost constant value (x = 9.7). The 
maximum variation within the shedding cycle is 0.4 per cent in the first case and 0-2 per cent 
in the second. 

For all the results presented here, the vortex sheet shapes and values of total circulation 
are sampled at the end of the shedding cycle. However, the pressure and normal force 
coefficients are evaluated at the midpoint of the shedding cycle since the rate of change of 
total circulation is discontinuous at the end points, as can be seen from Figure 7. The 
pressures and normal force are thus discontinuous at these points. One could choose other 
positions in the cycle so as to make the results, e.g. pressure distribution, apparently agree 
more favourably but such a choice would have no mathematical basis. It may also be noted 
here that, with reference to Figure 7, most other multi-vortex models produce a discontinuity 
in the variation of total circulation with x (or time) at the point of introduction of each new 
vortex. 

(ii) Delta wing with lengthwise camber 

Results have been obtained for the wing defined by 

S(X) = 0 * 2 5 ~ ,  x 3 0  
h(x)  = (Oe2', 0 S X S l  

0 . 1 ( 4 ~  - X' - l), x > 1 

which corresponds to a wing which is initially conical, as far as x =  1, with an angle of 

Figure 8. Cambered wing-planform and centre-line 
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Figure 9. (Continued). Cambered wing-sheet shapes: (d) x = 2.2; (e) x = 2.6; (f) x = 2.7 
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Figure 10. Cambered wing-local normal force coefficient 

incidence of about 0.2 radians, downstream from which the local angle of incidence 
decreases linearly, reaching zero at x = 2 as shown in Figure 8. Comparison is made with 
Clark's results: up to the point where his calculation fails, in Figures 9(a) to (c). The 
calculation fails because his method is unable to describe the vortex sheet shape as a second 
centre of rotation of opposite sign forms beneath the wing. The present method allows the 
calculation to continue downstream from this point, and the development of the second 
vortex system is shown in Figures 9(d) to (f); the total circulation of each system is shown 
separately. The broken line between the sheet vortices shows the probable position of the 
vortex sheet. The upper vortex system, which, owing to continued amalgamation, has 
reduced to a single vortex representation by x = 2.2 is eventually convected outboard along 
the wing and moves into the region occupied by the lower vortex system. This interaction of 
the two systems results in a warping of the vortex sheet and eventually chaotic motion of the 
vortex sheet elements as the two systems merge together and sweep each other away from 
the leading edge. At this point it may be that a wholly inviscid approach is no longer 
adequate. The variation of the local normal force coefficient as one proceeds downstream is 
shown in Figure 10 together with the attached flow solution. The coefficients are constant in 
the conical section, 0 5 x 5 1 .  As can be seen, additional force is generated from the 
presence of the vortex system on the forward part of the wing and as the second vortex 
system grows beneath the wing the force coefficient decreases and reduces below the 
attached flow solution. As the systems are swept off the wing an increase in force coefficient 
is observed. 

(iii) Double-delta wing 

This wing, shown in Figure 11, consists of an initial conical section attached to a truncated 
delta wing with a larger semi-apex angle so that the semi-span is continuous but the 
leading-edge slope is not. The semi-span is thus defined as 

0-lx, O ~ X X l O  r 1*0+O.4(~-  lo), x >lo.  s(x) = 

The wing models a type of straked wing for which one vortex system forms on the initial 
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Figure 11. Double-delta wing planform 

conical part of the wing, and a second system begins at the discontinuity and stays in the 
vicinity of the leading edge. The main interest lies in whether (a) the first system maintains its 
own identity and follows a path along some inboard portion of the wing, or (b) the first 
system is eventually drawn towards the second and merges with it. The angle of incidence 
obviously affects which of these situations will occur and to investigate this Fiddes” has 
performed calculations in which each vortex system is represented by a single vortex. On 
increasing the incidence gradually he found that the first value at which type (b) behaviour is 
encountered, within the distance his calculations proceeded downstream, is LY = 0.18. This 
incidence is also used in our calculation together with a smaller incidence of LY = 0.1 which 
does indeed produce &e (a) behaviour. The two sets of results are described below. 

(a) a=0-1. In Figures 12(a) to (e) we show the sheet shapes at various streamwise 
stations. The two configurations are seen to be moving outboard and becoming further apart 
as they proceed downstream. The last shed vortex of the first configuration can be seen to be 
‘undecided’ as to which configuration to ‘join’ and, although here it moves towards the first, 
calculations have been performed for a slightly larger incidence where it is captured by the 
second system. 

(b) a= 0.18. Sheet shapes for this incidence are shown in Figures 13(a) to (f). As can be 
seen, the first configuration is drawn outboard by its image vorticity in the wing towards the 
second and is eventually swept beneath it. Before the configurations merge, instability occurs 
in the outboard configuration, not at the point of first ‘contact’, as one might have expected, 
but on the straightest portion of the sheet springing from the leading edge. This may be due 
to the classical Helmholtz instability, which is inhibited in the curved part of the vortex sheet 
due to its rapid stretching. This explanation was put forward in a similar case by Moore6 in 
his calculations and later theoretically justified by him.” Once instability has commenced it 
is convected around the sheet and, again, as the systems merge, and also as the first moves 
very close to the wing, we may conjecture that a wholly inviscid approach cannot correctly 
model the situation. 

(iv) Lenticular wing 

This flat wing, which consists of a conical section whose edges join smoothly onto circular 
arcs, shown in Figure 14, is different from all the previous planforms in that the semi-span 
reaches a maximum value approximately half way down the wing and then recedes, so 
that the edges of the rear part of the wing are in fact trailing edges. Formally 

0 * 2 5 ~ ,  O = G X = G l * O  
s(x) = {[17-(~-2)~]”~-3.75, l.O<x<3.7139. 
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The motivation for studying this wing came from the uncertainty as to whether or not a 
second vortex system might be formed beneath the wing as, when the wing recedes, the 
possibility arises that the downwash at the leading edge may be sufficient to cause such 
behaviour. Although this did not turn out to be the case, the three cases considered below 
show three distinct types of behaviour in the vorticity shed from the wing edges. Results for 
the sheet shapes, at the station x = 3-0 near the rear of the wing, are shown in Figures 15(a) 
to (c). 
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(a) a = 0-25. Positive vorticity is shed down the whole length of the wing and rolls up into 
a vortex system which sits outboard of the wing edge as the semi-span reduces. 

(b) a = 0.2. Positive vorticity is shed as far as x = 2.2 with the strength of the shed vortices 
decreasing. At this station, with reference to the attached flow method described in Section 
5 ,  the parameter A becomes less than the value of Aait set for the calculation. From there 
on A reduces in size and then oscillates around A = 0 but with decreasing amplitude; it 
never moves outside the bounds set by A&t. Hence no vorticity is shed after x = 2.2. 
Obviously, decreasing the value of ACri, would allow more vorticity to be shed but the 
strength of the shed vortices would be very small. In fact, we are, rather arbitrarily, saying 
that vortices of a certain size (in this case less than one hundredth of the core size) should be 
ignored. 

(c) a = 0- 1. In this example the shed vorticity changes sign and convects around the vortex 
sheet. However, at x = 2.8 we reach a situation identical to that described in (b) above and 
no more vorticity is deemed to be shed in the calculation. 
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Figure 14. Lenticular wing planform 
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Figure 16. Lenticular wing-local normal force coefficient 

The distribution of the local normal force coefficient is shown in Figure 16 for all three 
incidences, together with the attached flow solution for Q = 0.2. The attached flow theory 
predicts zero additional lift downstream of the maximum span, at x = 2.0. Further, the 
linearized lifting surface theory of R. T. Jones” predicts zero vortex lift on sections 
downstream of the maximum span. This is due to the use of Prandtl’s assumption that the 
vortex sheet shed from the trailing edge of a slender wing remains coplanar in its vicinity. 
From the present results, for a = 0-2, we can see that we have additional vortex lift on the 
forward part of the wing and, for all three incidences, the calculations predict lift on the rear 
of the wing, where the rolling up of the vorticity has violated the assumption of Prandtl. A 
similar conclusion was drawn by Fink and Soh2’ who applied their vortex sheet model to a 
slender wing of rhombic planform. 

7 .  CONCLUSIONS 

An inviscid multi-vortex model has been developed for the description of vortices shed from 
the sharp leading edges of slender wings. Results obtained from the method have been 
shown to give good agreement with a vortex sheet model where comparison is available. 
Further, the method has widened the class of problems which can be dealt with, namely, 
those in which more than one coherent vortex structure is present. Results for such problems 
have been obtained as far downstream as the point where the vortex systems begin to merge. 

ACKNOWLEDGEMENTS 

The author would like to thank Professor N. Riley, University of East Anglia and Mr. J. H. 
B. Smith, R.A.E., Farnborough, for their help during the period in which this research was 
carried out and for their useful comments in the preparation of this paper. The research was 
supported by the U.K. S.E.R.C. in collaboration with the Aerodynamics Department, 
R.A.E. 



MULTI-VORTEX MODEL 565 

REFERENCES 

1. C. E. Brown and W. H. Michael, ‘On slender delta wings with leading-edge separation’, J. Aero. Sci., 21, 

2. J. H. B. Smith, ‘A theory of the separated flow from the curved leading edges of a slender wing’, ARC R & M 

3. J. H. B. Smith, ‘Improved calculations of leading-edge separation from slender delta wings’, Roc. Roy. Soc., 

4. R. W. Clark, “on-conical flow past slender wings with leading-edge vortex sheets’, ARCR & M No. 3814 

5. A. M. Sacks, R. E. Lundberg and C.  W. Hanson, ‘A theoretical investigation of the aerodynamics of slender 

6. D. W. Moore, ‘A numerical study of the roll-up of a finite vortex sheet’, J.  Fluid Mech., 63,225-235 (1974). 
7. R. R. Clements and D. J. Maull, ‘A representation of sheets of vorticity by discrete vortices’, Prog. Aerospace 

8. M. S. Longuet-Higgins, ‘Oscillating flow over steep sand ripples’, J.  Fluid Mech., 107, 1-35 (1981). 
9. J. M. R. Graham, ‘The forces on sharp-edged cylinders in oscillatory flow at low Keulegan-Carpenter numbers’, 

J. Ruid Mech., 97, 331-346 (1980); [see also ‘Vortex shedding from sharp edges’, Imperial College Aero Report 

690-694 and 706 (1954); [see also NACA TN 3430 (1955)l. 

No. 3216 (1957). 

A306, 67-90 (1968); [see also RAE Tech. Rep. 66070 (ARC 27897) (1966)l. 

(1978). 

wing-body combinations exhibiting leading-edge separation’, NASA CR-719 (1967). 

Sci. 16, 129-146 (1975). 

77-06 (1977)l. 
10. P. T. Fink and W. K. Soh, ‘A new approach to roll-up calculations of vortex sheets’, Proc. Roy. Soc., A362, 

195-209 (1978). 
11. D. W. Moore, ‘On the point vortex method’, unpublished report (1980). 
12. H. Portnoy, private communication (1981). 
13. G. N. Ward, Linearized Theory of Steady High-speed Flow, CUP (1955). 
14. J. H. B. Smith, private communication (1979). 
15. A. J. Peace, ‘A contribution to the theory of aerodynamic vortex flows’, Ph.D. thesis, University of East Anglia 

16. J. D. Lambert, Computational Methods in Ordinary Differential Equations, Wiley (1973). 
17. S. P. Fiddes, private communication (1980). 
18. D. W. Moore, ‘The stability of an evolving two-dimensional vortex sheet’, Muthemati~a, 23, 35-44 (1976). 
19. R. T. Jones, ‘Properties of low-aspect-ratio pointed wings at speeds below and above the speed of sound’, 

20. P. T. Fink and W. K. Soh, ‘On an anomalous result in linearized slender lifting surface theory’, Uniu. New S. 

(in preparation). 

NACA rep. No. 835 (1946). 

Wales report NAVIARCH 74/6 (1974). 




